作文库学科数学内容页

高中数学16个三角函数诱导公式,三角函数的诱导公式 ①sin(35π/6)+cos(-11π/3) ②3cos315°-tan765

2024-04-26 20:09:46数学73

sin(35π/6)=sin(6π-π/6)=-sinπ/6=-1/2
cos(-11π/3)=cos(11π/3}=cos(4π-π/3)=cosπ/3=1/2
所以原式为0
画一个一个角为30度的直角三角形  sinπ/3=sin60度=直角三角形60度所对直角边除以斜边

数学《诱导公式》

 常用的诱导公式有以下几组高中数学16个三角函数诱导公式:(公式一~公式五函数名未改变, 公式六函数名发生改变)
公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

弧度制下的角的表示:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

角度制下的角的表示:

sin (α+k·360°)=sinα(k∈Z)

cos(α+k·360°)=cosα(k∈Z)

tan (α+k·360°)=tanα(k∈Z)

cot(α+k·360°)=cotα (k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

弧度制下的角的表示:

sin(π+α)=-sinα (k∈Z)

cos(π+α)=-cosα(k∈Z)

tan(π+α)=tanα(k∈Z)

cot(π+α)=cotα(k∈Z)

角度制下的角的表示:

sin(180°+α)=-sinα(k∈Z)

cos(180°+α)=-cosα(k∈Z)

tan(180°+α)=tanα(k∈Z)

cot(180°+α)=cotα(k∈Z)

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα(k∈Z)

cos(-α)=cosα(k∈Z)

tan(-α)=-tanα(k∈Z)

cot(-α)=-cotα(k∈Z)

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

弧度制下的角的表示:

sin(π-α)=sinα(k∈Z)

cos(π-α)=-cosα(k∈Z)

tan(π-α)=-tanα(k∈Z)

cot(π-α)=-cotα(k∈Z)

角度制下的角的表示:

sin(90°-α)=sinα(k∈Z)

cos(90°-α)=-cosα(k∈Z)

tan(90°-α)=-tanα(k∈Z)

cot(90°-α)=-cotα(k∈Z)

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

弧度制下的角的表示:

sin(2π-α)=-sinα(k∈Z)

cos(2π-α)=cosα(k∈Z)

tan(2π-α)=-tanα(k∈Z)

cot(2π-α)=-cotα(k∈Z)

角度制下的角的表示:

sin(360°-α)=-sinα(k∈Z)

cos(360°-α)=cosα(k∈Z)

tan(360°-α)=-tanα(k∈Z)

cot(360°-α)=-cotα(k∈Z)

小结:以上五组公式可简记为:函数名不变,符号看象限.

即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。

公式六:

π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)

⒈ π/2+α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(π/2+α)=cosα(k∈Z)

cos(π/2+α)=-sinα(k∈Z)

tan(π/2+α)=-cotα(k∈Z)

cot(π/2+α)=-tanα(k∈Z)

角度制下的角的表示:

sin(90°+α)=cosα(k∈Z)

cos(90°+α)=-sinα(k∈Z)

tan(90°+α)=-cotα(k∈Z)

cot(90°+α)=-tanα(k∈Z)

⒉ π/2-α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(π/2-α)=cosα(k∈Z)

cos(π/2-α)=sinα(k∈Z)

tan(π/2-α)=cotα(k∈Z)

cot(π/2-α)=tanα(k∈Z)

角度制下的角的表示:

sin(90°-α)=cosα(k∈Z)

cos (90°-α)=sinα(k∈Z)

tan(90°-α)=cotα(k∈Z)

cot(90°-α)=tanα(k∈Z)

⒊ 3π/2+α与α的三角函数值之间的关系

弧度制下的角的表示:

sin(3π/2+α)=-cosα(k∈Z)

cos(3π/2+α)=sinα(k∈Z)

tan(3π/2+α)=-cotα(k∈Z)

cot(3π/2+α)=-tanα(k∈Z)

角度制下的角的表示:

sin(270°+α)=-cosα(k∈Z)

cos(270°+α)=sinα(k∈Z)

tan(270°+α)=-cotα(k∈Z)

cot(270°+α)=-tanα(k∈Z)

⒋ 3π/2-α与α的三角函数值之间的关系



弧度制下的角的表示:

sin(3π/2-α)=-cosα(k∈Z)

cos(3π/2-α)=-sinα(k∈Z)

tan(3π/2-α)=cotα(k∈Z)

cot(3π/2-α)=tanα(k∈Z)

角度制下的角的表示:

sin(270°-α)=-cosα(k∈Z)

cos(270°-α)=-sinα(k∈Z)

tan(270°-α)=cotα(k∈Z)

cot(270°-α)=tanα(k∈Z)

温馨提示:1.在做题目的时候,最好将α看成是锐角。 2.k∈Z

总结记忆:奇变偶不变,符号看象限。

再来一篇
上一篇:百度云高中数学函数pdf下载,高一数学-函数 下一篇:高中数学16个三角函数诱导公式,三角函数诱导公式及变形式
猜你喜欢