锐角三角函数 在直角三角形ABC中,a常用的高中数学函数公式视频讲解、b、c分别是∠A、∠B、∠C的对边,∠C为直角。则定义以下运算方式: sin A=∠A的对边长/斜边长,sin A记为∠A的正弦; cos A=∠A的邻边长/斜边长,cos A记为∠A的余弦; tan A=∠A的对边长/∠A的邻边长,tan A记为∠A的正切; 当∠A为锐角时sin A、cos A、tan A统称为“锐角三角函数”。 常见三角函数
在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)。 在这个直角三角形中,y是θ的对边,x是θ的邻边,r是斜边,则可定义以下六种运算方法:
基本函数 英文 表达式 语言描述 正弦函数 Sine sin θ=y/r 角θ的对边比斜边 余弦函数 Cosine cos θ=x/r 角θ的邻边比斜边 正切函数 Tangent tan θ=y/x 角θ的对边比邻边 余切函数 Cotangent cot θ=x/y 角θ的邻边比对边 正割函数 Secant sec θ=r/x 角θ的斜边比邻边 余割函数 Cosecant csc θ=r/y 角θ的斜边比对边
在初高中教学中,主要研究正弦、余弦、正切三种函数。
注:tan、cot曾被写作tg、ctg,现已不用这种写法。
/----------------------------------------------------------------------------------/
诱导公式的表格以及推导方法(定名法则和定号法则)
sinβ cosβ tanβ cotβ secβ cscβ 2kπ+α sinα cosα tanα cotα secα cscα (1/2)kπ-α cosα sinα cotα tanα cscα secα (1/2)kπ+α cosα -sinα -cotα -tanα -cscα secα kπ-α sinα -cosα -tanα -cotα -secα cscα kπ+α -sinα -cosα tanα cotα -secα -cscα (3/2)kπ-α -cosα -sinα cotα tanα -cscα -secα (3/2)kπ+α -cosα sinα -cotα -tanα cscα -secα 2kπ-α -sinα cosα -tanα -cotα secα -cscα ﹣α -sinα cosα -tanα -cotα secα -cscα
定名法则
90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”
定号法则
将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”.(或为“奇变偶不变,符号看象限”
2在Kπ/中如果K为奇数时函数名不变,若为偶数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有可口诀;一全正二正弦,三正切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切、余切为正,第四象限余弦为正。)
比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~
还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以sin(90°+α)=cosα
两角和与差的三角函数
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化积公式
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
积化和差公式
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
倍角公式
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²α
tan(2α)=2tanα/(1-tan²α)
cot(2α)=(cot²α-1)/(2cotα)
sec(2α)=sec²α/(1-tan²α)
csc(2α)=1/2*secα·cscα
三倍角公式
sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)
cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan³α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α)
cot(3α)=(cot³α-3cotα)/(3cotα-1)
n倍角公式
sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…
cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…
半角公式
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)
sec(α/2)=±√((2secα/(secα+1))
csc(α/2)=±√((2secα/(secα-1))
辅助角公式
Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A))
Asinα+Bcosα=√(A²+B²)cos(α-arctan(A/B))
万能公式
sin(a)= (2tan(a/2))/(1+tan²(a/2))
cos(a)= (1-tan²(a/2))/(1+tan²(a/2))
tan(a)= (2tan(a/2))/(1-tan²(a/2))
降幂公式
sin²α=(1-cos(2α))/2=versin(2α)/2
cos²α=(1+cos(2α))/2=covers(2α)/2
tan²α=(1-cos(2α))/(1+cos(2α))
三角和的三角函数
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
其它公式
1+sin(a)=(sin(a/2)+cos²(a/2)) 1-sin(a)=(sin(a/2)-cos²(a/2))
csc(a)=1/sin(a) sec(a)=1/cos(a)
cos30°=sin60° sin30°=cos60°
推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos²α
1-cos2α=2sin²α
1+sinα=[sin(α/2)+cos(α/2)]²;