设向量OP*OQ=x。因为向量PQ=向量OQ-向量OP高中数学必修一三角函数的概念2,两边平方,再将已知代入(OP平方=1,OQ平方=4):20/9=4+1-2x,解出x=25/18。
高中数学三角函数2
因为cosx 的对称中心是(kπ+π/2,0) 所以此函数关于这个点中心对称
跪求 高中数学三角函数知识点
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集
cos(α+β)=cosα•cosβ-sinα•sinβ
cos(α-β)=cosα•cosβ+sinα•sinβ
sin(α±β)=sinα•cosβ±cosα•sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)
•和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
•积化和差公式:
sinα•cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα•sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα•cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα•sinβ=-(1/2)[cos(α+β)-cos(α-β)]
•倍角公式:
sin(2α)=2sinα•cosα=2/(tanα+cotα)
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/(1-tan^2α)
cot(2α)=(cot^2α-1)/(2cotα)
sec(2α)=sec^2α/(1-tan^2α)
csc(2α)=1/2*secα•cscα
•三倍角公式:
sin(3α) = 3sinα-4sin^3α = 4sinα•sin(60°+α)sin(60°-α)
cos(3α) = 4cos^3α-3cosα = 4cosα•cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)
cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)
•n倍角公式:
sin(nα)=ncos^(n-1)α•sinα-C(n,3)cos^(n-3)α•sin^3α+C(n,5)cos^(n-5)α•sin^5α-…
cos(nα)=cos^nα-C(n,2)cos^(n-2)α•sin^2α+C(n,4)cos^(n-4)α•sin^4α-…
•半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)
sec(α/2)=±√((2secα/(secα+1))
csc(α/2)=±√((2secα/(secα-1))
•辅助角公式:
Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)
Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)
•万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
•降幂公式
sin^2α=(1-cos(2α))/2=versin(2α)/2
cos^2α=(1+cos(2α))/2=covers(2α)/2
tan^2α=(1-cos(2α))/(1+cos(2α))
•三角和的三角函数:
sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sinγ
cos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tanγ•tanα)
•其它公式
•两角和与差的三角函数
cos(α+β)=cosα•cosβ-sinα•sinβ
cos(α-β)=cosα•cosβ+sinα•sinβ
sin(α±β)=sinα•cosβ±cosα•sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)
•和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
•积化和差公式:
sinα•cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα•sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα•cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα•sinβ=-(1/2)[cos(α+β)-cos(α-β)]
•倍角公式:
sin(2α)=2sinα•cosα=2/(tanα+cotα)
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/(1-tan^2α)
cot(2α)=(cot^2α-1)/(2cotα)
sec(2α)=sec^2α/(1-tan^2α)
csc(2α)=1/2*secα•cscα
•三倍角公式:
sin(3α) = 3sinα-4sin^3α = 4sinα•sin(60°+α)sin(60°-α)
cos(3α) = 4cos^3α-3cosα = 4cosα•cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)
cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)
•n倍角公式:
sin(nα)=ncos^(n-1)α•sinα-C(n,3)cos^(n-3)α•sin^3α+C(n,5)cos^(n-5)α•sin^5α-…
cos(nα)=cos^nα-C(n,2)cos^(n-2)α•sin^2α+C(n,4)cos^(n-4)α•sin^4α-…
•半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)
sec(α/2)=±√((2secα/(secα+1))
csc(α/2)=±√((2secα/(secα-1))
•辅助角公式:
Asinα+Bcosα=√(A^2+B^2)sin(α+φ)(tanφ=B/A)
Asinα+Bcosα=√(A^2+B^2)cos(α-φ)(tanφ=A/B)
•万能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
•降幂公式
sin^2α=(1-cos(2α))/2=versin(2α)/2
cos^2α=(1+cos(2α))/2=covers(2α)/2
tan^2α=(1-cos(2α))/(1+cos(2α))
•三角和的三角函数:
sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sinγ
cos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tanγ•tanα)
•其它公式
1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2
csc(a)=1/sin(a) sec(a)=1/cos(a)
cos30=sin60
sin30=cos60
•推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=[sin(α/2)+cos(α/2)]^2
1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2
csc(a)=1/sin(a) sec(a)=1/cos(a)
cos30=sin60
sin30=cos60
•推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=[sin(α/2)+cos(α/2)]^20|