必修二和四,前面主要介绍诱导公式b版高中数学三角函数在哪本书、三角函数线和应用的,后面主要是三角恒等变换,这部分比较难,公式繁多,但却易考。高中数学三角函数是课本必修几
高中数学人教版平面向量和三角函数在哪一本学的
是数学必修4。
内容包括——三角函数 平面向量 三角恒等变换。
向量(矢量)这个术语作为现代数学-物理学中的一个重要概念,首先是由英国数学家哈密顿使用的。向量的名词虽来自哈密顿,但向量作为一条有向线段的思想却由来已久。
向量理论的起源与发展主要有三条线索:物理学中的速度和力的平行四边形法则、位置几何、复数的几何表示。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。
常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。
三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
扩展资料:
现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
参考资料来源:百度百科-平面向量
参考资料来源:百度百科-三角函数