作文库学科数学内容页

if函数的区间和高中数学的区间,高中数学函数中的“定义域”和“单调区间”分别是什么意思啊?

2024-04-26 13:09:29数学277

要看书啊
概念的东西一定要搞懂啊
定义域 定义域(Domain)if函数的区间和高中数学的区间,在数学中可以被看作为函数的所有输入值的集合。
给定函数<math>f:Arightarrow B</math>,其中<math>A</math>被称为是<math>f</math>的定义域。
<math>f</math>映射到陪域中的所有值得集合被称为是<math>f</math>的值域,记作为<math>f(A)</math>。
一个被良好定义的函数必定将定义域中的每一个元素都映射到它陪域中的元素。例如,函数<math>f</math>定义为
<math>f(x) = 1/x</math>
在<math>f(0)</math>时无值。因此,实数的集合<math>mathbb</math>不能成为其定义域。
此时,函数通常既可以被定义在<math>mathbb</math>上,也可以插入一个对<math>f(0)</math>的特殊定义。
如果我们将对<math>f</math>的定义延伸到 <math>f(x) = 1/x</math>,当 <math>xneq 0</math> <math>f(0) = 0</math>,
则<math>f</math>就被定义在所有的实数上,我们也可以将<math>mathbb</math>作为它的定义域。
任何函数都可以被限制到其定义域的子集上。限制<math>g:Arightarrow B</math>到<math>S</math>上,这里<math>Ssubseteq A</math>,可以记作为<math>g|s:Srightarrow B</math>。
函数定义域的三类求法
一、给出函数解析式求其定义域,一般是先列出限制条件的不等式(组),再进行求解。
二. 给出函数的定义域,求函数的定义域,其解法步骤是:若已知函数的定义域为,则其复合函数的定义域应由不等式解得。
三. 给出的定义域,求的定义域,其解法步骤是:若已知的定义域为,则的定义域是在时的取值范围。
单调性 函数的单调性也叫函数的增减性.函数的单调性是对某个区间而言的,它是一个局部概念.
[编辑本段]⒈ 增函数与减函数
一般地,设函数f(x)的定义域为I:
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2).那么就说f(x)在 这个区间上是增函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2).那么就是f(x)在这个区间上是减函数。
[编辑本段]⒉ 单调性与单调区间
若函数y=f(x)在某个区间是增函数或减函数,则就说函数在这一区间具有(严格的)单调性,这一区间叫做函数的单调区间.此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
注:在单调性中有如下性质
↑(增函数)↓(减函数)
↑+↑=↑ ↑-↓=↑ ↓+↓=↓ ↓-↑=↓
***对于概念的东西,你可以去百度的百科中去查,更快点***

再来一篇
上一篇:复合函数是在高中数学哪本书学的,数学导数的复合函数 下一篇:高中数学《函数与导数》知识梳理,高3 导数的知识点?
猜你喜欢