三角函数是数学中常见的一类关于角度的函数。
也可以说以角度为自变量高中数学《三角函数的概念》教案,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。
而α,β,γ等并没有特定的意思,只是一个代表的符号。
数学三角函数(高一)的概念总结
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.积化和差公式 (上面公式反过来就得到了)
sin(a)sin(b)=-12⋅[cos(a+b)-cos(a-b)]
cos(a)cos(b)=12⋅[cos(a+b)+cos(a-b)]
sin(a)cos(b)=12⋅[sin(a+b)+sin(a-b)]
5.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
6.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
7.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
8.其它公式(推导出来的 )
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba
a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2