I、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b(k初中高中数学函数公式大全及图解,b为常数,k≠0) 则称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 II、一次函数的性质: y的变化值与对应的x的变化值成正比例,比值为k 即 △y/△x=k III、一次函数的图象及性质: 1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。 2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 3. k,b与函数图象所在象限。 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 IV、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程: y1=kx1+b① 和 y2=kx2+b②。 (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 V、一次函数在生活中的应用 1.当时间t一定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。