作文库学科数学内容页

高中数学sin函数闭区间单调性,高中的函数怎样求单调性、最值、奇偶性,怎么证明单调区间

2024-05-02 04:41:18数学144

.函数的单调性就是随着x的变大高中数学sin函数闭区间单调性,y在变大就是增函数,y变小就是减函数,具有这样的性质就说函数具有单调性,符号表示:就是定义域内的任意取x1,x2,且x1<x2,比较f(x1),f(x2)的大小,图像上看从左往右看图像在一直上升或下降的就是单调函数 (或f(x1)<f(x2)则是增函数);2. (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)和f(-x)=f(x),(x∈D,且D关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言。
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义。
④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。
2.奇偶函数图像的特征:
定理 奇函数的图像关于原点成中心对称图形,偶函数的图像关于y轴的轴对称图形。
f(x)为奇函数<=>f(x)的图像关于原点对称
点(x,y)→(-x,-y)
f(x)为偶函数<=>f(x)的图像关于Y轴对称
点(x,y)→(-x,y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
3.证明方法
(1)定义法:函数定义域是否关于原点对称
(2)图像法: f(x)为奇函数<=>f(x)的图像关于原点对称
点(x,y)→(-x,-y)
f(x)为偶函数<=>f(x)的图像关于Y轴对称
点(x,y)→(-x,y)
3.若定义域就是让函数有意义
则最值的方法很多,有1,配方法 2,换元法 3,基本不等式,4,单调性法,5,导数法 6,数形结合 7,向量法 8,判别式法 9,构造法,10,三角函数的有界性

再来一篇
上一篇:高中数学必修二函数平移的公式,高中数学里的平移 下一篇:高中数学sincos周期函数图像,如何求函数周期
猜你喜欢