最大值-1高中数学sin函数图像及性质,最小值-3
x/3-π/4=π/2+2kπ时,即x=3π/4+2kπ时 sin最大=1 y最大1-2=-1
x/3-π/4=-π/2+2kπ时,即x=-π/4+2kπ时 sin最小=-1 y最小-1-2=-3
三角函数的图象与性质
y=sin2x对称轴为x=kπ+π/2
f (x)=sin(2x+φ)=sin[2(x+φ/2)]
φ/2=kπ+π/2-π/8=kπ+3π/8
φ=2kπ+3π/4
反比例函数、二次函数、幂函数、指数函数、对数函数、反函数的图像各有什么特征?
这是初中高中数学所有函数的性质 图像
1.一次函数(包括正比例函数) 最简单最常见的函数,在平面直角坐标系上的图象为直线。
定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R
值域:R
奇偶性:无
周期性:无
平面直角坐标系解析式(下简称解析式):
①ax+by+c=0[一般式]
②y=kx+b[斜截式]
(k为直线斜率,b为直线纵截距,正比例函数b=0)
③y-y1=k(x-x1)[点斜式]
(k为直线斜率,(x1,y1)为该直线所过的一个点)
④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]
((x1,y1)与(x2,y2)为直线上的两点)
⑤x/a-y/b=0[截距式]
(a、b分别为直线在x、y轴上的截距)
解析式表达局限性:
①所需条件较多(3个);
②、③不能表达没有斜率的直线(平行于x轴的直线);
④参数较多,计算过于烦琐;
⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a)。
2.二次函数
题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。
定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+t[配方式]
此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);
3.反比例函数
在平面直角坐标系上的图象为双曲线。
定义域:(负无穷,0)∪(0,正无穷)
值域:(负无穷,0)∪(0,正无穷)
奇偶性:奇函数
周期性:无
解析式:y=1/x
4.幂函数
y=x^a
①y=x^3
定义域:R
值域:R
奇偶性:奇函数
周期性:无
图象类似于将一个过圆点的二次函数的第四区间部分关于x轴作轴对称
后得到的图象(类比,这个方法不能得到三次函数图象)
②y=x^(1/2)
定义域:[0,正无穷)
值域:[0,正无穷)
奇偶性:无(即非奇非偶)
周期性:无
图象类似于将一个过圆点的二次函数以原点为旋转中心,顺时针旋转
90°,再去掉y轴下方部分得到的图象(类比,这个方法不能得到三次
函数图象)
5.指数函数
在平面直角坐标系上的图象(太难描述了,说一下性质吧……)
恒过点(0,1)。联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减。
定义域:R
值域:(0,正无穷)
奇偶性:无
周期性:无
解析式:y=a^x
a>0
性质:与对数函数y=log(a)x互为反函数。
*对数表达:log(a)x表示以a为底的x的对数。
6.对数函数
在定义域上的图象与对应的指数函数(该对数函数的反函数)的图象关于直线y=x轴对称。
恒过定点(1,0)。联系解析式,若a>1则函数在定义域上单调增;若0<a<1 则函数在定义域上单调减。
定义域:(0,正无穷)
值域:R
奇偶性:无
周期性:无
解析式:y=log(a)x
a>0
性质:与对数函数y=a^x互为反函数。
7.三角函数
⑴正弦函数:y=sinx
图象为正弦曲线(一种波浪线,是所有曲线的基础)
定义域:R
值域:[-1,1]
奇偶性:奇函数
周期性:最小正周期为2π
对称轴:直线x=kπ/2 (k∈Z)
中心对称点:与x轴的交点:(kπ,0)(k∈Z)
⑵余弦函数:y=cosx
图象为正弦曲线,由正弦函数的图象向左平移π/2个单位(最小平移量)所得。
定义域:R
值域:[-1,1]
奇偶性:偶函数
周期性:最小正周期为2π
对称轴:直线x=kπ (k∈Z)
中心对称点:与x轴的交点:(π/2+kπ,0)(k∈Z)
⑶正切函数:y=tg x
图象的每个周期单位很像是三次函数,很多个,均匀分布在x轴上。
定义域:{x│x≠π/2+kπ}
值域:R
奇偶性:奇函数
周期性:最小正周期为π
对称轴:无
中心对称点:与x轴的交点:(kπ,0)(k∈Z)。
*三角函数的性质略了,太多,光公式就不止千个。另外,三角函数的图象平移、拉伸变化,在图象平移内容中说得很清楚(不在这里,在教材里)我就不多说了。
大功告成!希望对你的学习有所帮助。