解高中数学必修4-5函数的应用:∵ 函数f(x)是定义在R上的奇函数
∴ 此函数过原点, 即 f(0)=0.
由 f(x+2)=-f(x), 可知函数是以2为周期的奇函数.
当x=0时 f(2)= f(0+2)=-f(0)=0,
∴ f(6)=f(4+2)=-f(4)=-f(2+2)=-[-f(2)]=f(2)=0
若有不清楚我们再讨论 ^_^
高中数学函数应用题
1)y=x [(100-x) / 2]
x<100
2)展开得到y=-1/2x²+50x
用公式-b/2a =50
4ac-b²/4a=25
所以当x=50另一边=25的时候 最大面积是1250
数学函数的应用
(e^x-1)(e^x+1),哪个是分子,哪个是分母?
前者是分子,f(x)的定义域R,前者是分母,f(x)的定义域{x|x≠0}
f(-x)=(e^-x-1)(e^-x+1)=-(e^x-1)(e^x+1)=-f(x),所以f(x)的奇函数
高中数学函数知识在实际生活中有哪些时候运用到了
在园内取一个半径为r,园心角为dθ的扇形,此扇形的微面积ds=(1/2)r²dθ.
然后取0到2π的定积分,即得园的面积S=(1/2)r²∫[0,2π]dθ=(1/2)r²θ∣[0,2π]=πr²