作文库学科数学内容页

高中数学sincos同角函数,谁知道数学三角函数的换算公式??

2024-05-02 01:11:07数学296

它有六种基本函数(初等基本表示):


函数名 正弦 余弦 正切 余切 正割 余割


正弦函数 sinθ=y/r


余弦函数 cosθ=x/r


正切函数 tanθ=y/x


余切函数 cotθ=x/y


正割函数 secθ=r/x


余割函数 cscθ=r/y


以及两个不常用,已趋于被淘汰的函数:

正矢函数 versinθ =1-cosθ

余矢函数 vercosθ =1-sinθ


同角三角函数间的基本关系式:

•平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

•积的关系:

sinα=tanα*cosα cosα=cotα*sinα

tanα=sinα*secα cotα=cosα*cscα

secα=tanα*cscα cscα=secα*cotα

•倒数关系:

tanα•cotα=1

sinα•cscα=1

cosα•secα=1


三角函数恒等变形公式:

•两角和与差的三角函数:

cos(α+β)=cosα•cosβ-sinα•sinβ

cos(α-β)=cosα•cosβ+sinα•sinβ

sin(α±β)=sinα•cosβ±cosα•sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)


•辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)


•倍角公式:

sin(2α)=2sinα•cosα

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]


•三倍角公式:

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα


•半角公式:

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα


•万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]


•积化和差公式:

sinα•cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα•sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα•cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα•sinβ=-(1/2)[cos(α+β)-cos(α-β)]


•和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]


•其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0


部分高等内容


•高等代数中三角函数的指数表示(由泰勒级数易得):

sinx=[e^(ix)-e^(-ix)]/2

cosx=[e^(ix)+e^(-ix)]/2

tanx=[e^(ix)-e^(-ix)]/[^(ix)+e^(-ix)]


泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…

此时三角函数定义域已推广至整个复数集高中数学sincos同角函数。


•三角函数作为微分方程的解:

对于微分方程组 y=-y'';y=y'''',有通解Q,可证明

Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。



补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。

再来一篇
上一篇:高中数学必修电子课本极限雨函数,◆高中数学必修4《三角函数》 下一篇:高中数学必修1奇偶函数知识点,高一 函数奇偶性
猜你喜欢