反比例函数的应用教学设计
教学目标:
1高中数学必修一函数的应用教案、 经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程
2、 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力
教学重点和难点:
教学过程:
一、复习:反比例函数的图象与性质
反比例函数:
当k>0时,两支曲线分别在 ,在每一象限内,y的值随x的增大而
当k<0时,两支曲线分别在 ,在每一象限内,y的值随x的增大而
二、情境导入
某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,
为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木
板,构筑成一条临时通道,从而顺利完成了任务的情境。你能解释他
们这样做的道理吗?(见书P143)
(1)用含S的代数式表示P,P是S的反比例函数吗?为什么?
(2)当木板面积为0.2 时,压强是多少
(3)如果要求压强不超过6000Pa,木板面积至少要多大
(4)在直角坐标系中,作出相应的函数图象。
(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流
三、做一做
1.蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R( )之间
的函数关系如图所示。(书上P114)
(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制
电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?
四、想一想
1.某蓄水池的排水管每时排水8m3 ,6h可将满池水全部排空。
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到Q( ),那么将满池水排空
所需的时间t(h)将如何变化?
(3)写出t与Q之间的关系;
(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?
(5)已知排水管的最大排水量为每时12 ,那么最少多长时间可将满
池水全部排空?
五、练一练
1、若一次函数y=kx+b与反比例函数y=m/x 交于点A(-1,2)、B(2,-1)两点。
(1)试求出两个函数的表达式;
(2)求△AOB的面积。
2、如图,已知点 (m,5)是反比例函数 y=k/x 的图象上的一点,PA⊥x轴于A,PB⊥y轴于B,且矩形OAPB的面积是20。
(1)你能求出m的值吗?
(2)若点 (a,b)也在这支双曲线图象上,且a+b=12,请你求出a,b的值。
六、小结
今天这节课学习了什么?你掌握了什么?
今天学习了反比例函数的应用,讲了四个类型:
1.压力与压强、受力面积的关系
2.电压、电流与电阻的关系
3.已知点的坐标求相关的函数表达式
4.求由函数图象与坐标轴围成的面积