性质高中数学必修一三角函数图像性质:奇函数、偶函数、单调递增、单调递减、对称性、
在一个周期内、这些性质在图像上是很直观的、所以你最起码要对三角函数的图像很熟悉、要懂得周期是怎么算的、还有就是最基本的几个特殊角度(0,30,45,60,90)的sin与cos值、其实你的问题是非常简单的、多画画、
三角函数的图像和性质
设周期为T
因为f(x)=2sinwx是奇函数,所以可认为在【-π/3,π/3】上递增。
即T/2>=2π/3
即T>=4π/3
又2π/w=T
所以0<=3/2
三角函数图像与性质
f(x)=sin2x-cos2x+1=根号2sin(2x+派/4)+1,最小正周期是派,最大值是根号2+1
求三角函数的图象和性质的详细资料
1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(π2-a)=cos(a) cos(π2-a)=sin(a) sin(π2+a)=cos(a) cos(π2+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)−sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.积化和差公式 (上面公式反过来就得到了) sin(a)sin(b)=-12⋅[cos(a+b)-cos(a-b)] cos(a)cos(b)=12⋅[cos(a+b)+cos(a-b)] sin(a)cos(b)=12⋅[sin(a+b)+sin(a-b)] 5.二倍角公式 sin(2a)=2sin(a)cos(b) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 7.万能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 8.其它公式(推导出来的 ) a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab 1+sin(a)=(sin(a2)+cos(a2))2 1-sin(a)=(sin(a2)-cos(a2))2