作文库学科数学内容页

高中数学常用的6个函数表达式,高中11个函数

2024-05-11 17:15:05数学277

1. 正比例函数y=kx,k为常数且k≠0
2. 反比例函数y=k/x,定义域为x≠0
3. 幂函数y=x的a次方高中数学常用的6个函数表达式,a为常数
4. 指数函数y=a的x次方,a>0且a≠1
5. 对数函数y=logax,x>0,a>0且a≠1
6. 一次函数y=kx+b
   7.  二次函数y=ax²+bx+c

   8. 正弦函数y=sinx
   9.余弦函数y=cosx
   10.正切函数y=tanx
    11.对勾函数y=ax+b/x

函数怎么这么难学啊 高中会涉及到哪些关于函数的公式啊

高中数学的函数主要是初等函数:如常数函数,一次函数,二次函数,对数函数,指数函数,幂函数,三角函数,对数函数,指数函数,对勾函数等以。及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数

高中数学公式总结一定要全面!函数和三角函数、立体几何、向量、数列等

对数的性质及推导 用^表示乘方,用log(a)(b)表示以a为底,b的对数 *表示乘号,/表示除号 定义式: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1.a^(log(a)(b))=b 2.log(a)(MN)=log(a)(M)+log(a)(N); 3.log(a)(M/N)=log(a)(M)-log(a)(N); 4.log(a)(M^n)=nlog(a)(M) 推导 1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b) 2. MN=M*N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)] * a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3.与2类似处理 MN=M/N 由基本性质1(换掉M和N) a^[log(a)(M/N)] = a^[log(a)(M)] / a^[log(a)(N)] 由指数的性质 a^[log(a)(M/N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M/N) = log(a)(M) - log(a)(N) 4.与2类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 其他性质: 性质一:换底公式 log(a)(N)=log(b)(N) / log(b)(a) 推导如下 N = a^[log(a)(N)] a = b^[log(b)(a)] 综合两式可得 N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以 b^[log(b)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 所以 log(b)(N) = [log(a)(N)]*[log(b)(a)] {这步不明白或有疑问看上面的} 所以log(a)(N)=log(b)(N) / log(b)(a) 性质二:(不知道什么名字) log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下 由换底公式[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(a^n) / ln(b^n) 由基本性质4可得 log(a^n)(b^m) = [n*ln(a)] / [m*ln(b)] = (m/n)*{[ln(a)] / [ln(b)]} 再由换底公式 log(a^n)(b^m)=m/n*[log(a)(b)] --------------------------------------------(性质及推导 完 ) 公式三: log(a)(b)=1/log(b)(a) 证明如下: 由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数,log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)*log(b)(a)=1 三角函数的和差化积公式 sinα+sinβ=2sin(α+β)/2·cos(α-β)/2 sinα-sinβ=2cos(α+β)/2·sin(α-β)/2 cosα+cosβ=2cos(α+β)/2·cos(α-β)/2 cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2 三角函数的积化和差公式 sinα ·cosβ=1/2 [sin(α+β)+sin(α-β)] cosα ·sinβ=1/2 [sin(α+β)-sin(α-β)] cosα ·cosβ=1/2 [cos(α+β)+cos(α-β)] sinα ·sinβ=-1/2 [cos(α+β)-cos(α-β)]

再来一篇
上一篇:高中数学常见函数放缩及其证明,高一数学如何证明增减函数 下一篇:高中数学常见函数放缩及其证明,高中数学常用证明方法有哪些?
猜你喜欢