这是三角函数的诱导公式高中数学必修1三角函数诱导公式,所有诱导公式如下:
诱导公式列表:
诱导公式的来源,在于三角函数的图像是一个周期性的波动函数,这个函数呈周期性变化,同时sinX是奇函数,cosX是偶函数,它们分别具有奇函数和偶函数的特征,同时又是周期函数,于是就有了诱导公式,如图:
数学高一三角函数诱导公式都什么跟什么啊?????求解释
诱导公式的本质:
所谓三角函数诱导公式,就是将角n·(π/2)±α的三角函数转化为角α的三角函数。
常用的诱导公式:
公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cos(2kπ+α)=cosα k∈z
公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cos(π+α)=cosα
公式三: 任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cos(-α)=-cosα
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cos(π-α)=-cosα
公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cos(2π-α)=-cosα
公式六: π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cosα
cos(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cosα
cos(π/2-α)=tanα
推算公式:3π/2±α与α的三角函数值之间的关系:
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cosα
cos(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cosα
cos(3π/2-α)=tanα