如高中数学必修一分段函数单调问题:当x属于【0,1】时,求函数f(x)=x^2+(2-6a)x+3a^2的最小值是多少?
解:f(x)=[x+(1-3a)]^2-(1-3a)^2+3a^2
=[x+(1-3a)]^2-6a^2+6a-1
∴在R上x=3a-1时f(x)有最小值
那么,当3a-1<0时,f(x)在[0,1]上单调递增,故f(x)在x=0时最小,f(x)min=f(0)=3a^2
当0≤3a-1≤1时,f(x)在x=3a-1时有最小值,f(x)min=-6a^2+6a-1
当3a-1>1时,f(x)在[0,1]上单调递减,故f(x)在x=1时最小,f(x)min=f(1)=3-6a+3a^2