首先奇函数和偶函数分别是关于原点和y轴对称高中数学常见的奇函数和偶函数。它们的定义域和值域跟他们没什么关系,要看具体函数
高中数学 经常用偶函数f(x) 或 奇函数f(x)来 做题 我老是分不清 请大家解释下 顺便给几道例题
先看定义域是否关于原点对称
如果不是关于原点对称,则函数没有奇偶性
若定义域关于原点对称
则f(-x)=f(x),f(x)是偶函数
f(-x)=-f(x),f(x)是奇函数
判断函数奇偶性的主要四法
1.用必要条件
函数具有奇偶性的必要条件是定义域关于原点对称.
常用于选择题,如果不是关于原点对称,那么函数没有奇偶性.
2.用奇偶性
若定义域关于原点对称
则f(-x)=f(x),f(x)是偶函数.
f(-x)=-f(x),f(x)是奇函数.
3.用函数运算
f是偶函数,F是偶函数,j是奇函数,J是奇函数.
则偶+偶=偶,偶×偶=偶,
奇+奇=奇,奇×奇=偶 ,
奇×偶=奇。
4.用图象
关于y轴对称的是偶函数,
关于原点对称的是奇函数。
例1 判断下列函数的奇偶性;
(1) f (x)=x+x3+x5; (奇函数)
(2) f (x)=x2+1; (偶函数)
(3) f (x)=x+1; (非奇非偶函数)
(4) f (x)=x2,x∈[-1, 3];(非奇非偶函数)
(5) f (x)=0. (既是奇函数又是偶函数)